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This paper gives the resul ts  of a numerical  calculation of a laminar  boundary layer  
with the free convection of a binary mixture of carbon dioxide and a i r  at a ver t ical  
heated surface.  It compares  the numerical  solution with an approximate analytical 
solution and with experiment.  

When several  components are  present  in a boundary layer ,  the ordinary mechanism for the t rans fe r  
of energy is complicated by cliffusion effects.  The differential equations of a laminar  boundary layer ,  de- 
scr ibing the free convection of a binary mixture along a ver t ical  surface,  taking account of the diffusional 
t r ans fe r  of energy,  have the fo rm 
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The boundary conditions a re  

y = 0 ,  u = 0 ,  v = v ~ ,  T = T ~ ,  m 1 ---~ r n l w  

y = c r  u = O ,  T = T ~ ,  m , = m ~  
(7) 

Here x is a coordinate directed along the surface;  y is a coordinate directed perpendicular  to the  su r -  
face; u, v are  the components of the velocity along the x and y axes; T, T w, Too a re  the tempera tures ,  r e -  
spectively,  within the boundary layer ,  at the ver t ica l  surface,  and beyond the l imits  of the boundary layer ;  
m, mw, moo are the mass  concentrat ions of the active component, respectively,  within the boundary layer ,  at the 
ver t ica l  surface,  and beyond the l imits of the boundary layer ;  fiT, tim are the temperature  and concentration 
coefficients of volumetr ic  expansion; v is the kinematic viscosi ty ;  k is the coefficient of thermal  conduc- 
tivity; Cpl and Cp2 a re  the specific heat capacit ies of the active component (carbon dioxide) and air ;  a T is 
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T A B L E  1 
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a' t h e r m o d i f f u s i o n a l  cons t an t ;  M, MI, M 2 a r e  the  m o l e c u l a r  w e igh t s  of the  m i x t u r e  of the  a c t i v e  c o m p o n e n t  
and  a i r ;  R i s  the  g a s  c o n s t a n t  of the  m i x t u r e .  

In the  s y s t e m  of equa t i ons  {1)-(4) the  p h y s i c a l  p r o p e r t i e s  of the  m e d i u m  a r e  a s s u m e d  cons t an t .  The 
d e n s i t y  of the  m e d i u m ,  e n t e r i n g  into the  e x p r e s s i o n  fo r  the  l i f t i ng  f o r c e ,  de pe nds  on the t e m p e r a t u r e  of the  
m e d i u m  and  on the c o n c e n t r a t i o n  of the  a c t i v e  c ompone n t .  The  t e m p e r a t u r e  of the s u r f a c e  T w and the  c o n -  
c e n t r a t i o n  of the  a c t i v e  c o m p o n e n t  a t  the  s u r f a c e ,  ralw , a r e  c o n s t a n t .  The  s e c o n d  t e r m  on the  r i g h t  s ide  
of  Eq. (5) d e s c r i b e s  the  t r a n s f e r  of hea t  by d i f fus iona l  t h e r m a l  conduc t iv i ty  (the Dufeau e f fec t ) .  T h e r m o -  
d i f fus ion  was  not  t aken  into accoun t  in the  d e t e r m i n a t i o n  of the  f low of m a s s  us ing  Eq. (6). 

We i n t r o d u c e  the  v a r i a b l e  W = e i y x  - t /4 ,  w h e r e  

and  the  f low func t ion  

w h i c h  i s  such  tha t  
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The  s y s t e m  (1)-(4) is  r e d u c e d  to o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s .  In t he  new v a r i a b l e s ,  the  compo~ 
nen t s  of the  v e l o c i t y ,  u and  v,  have  the  f o r m  

u : .  4 "~c l *x ' / ' f  ' ( 'q), v = v c l x - ' h  [ f '  01) - -  31 01)1 (9) 

and  the  equa t ion  of m o t i o n  (2) i s  t r a n s f o r m e d :  

�9 f" '  (~1) -F 3f 01) ]" (~1) - - 2 ]  '2 (~1) + O 01) + eq9 (TI) = 0 (10) 

F r o m  the equa t i ons  of e n e r g y  (3) and  d i f fus ion  (4), r e s p e c t i v e l y ,  we ob ta in  

0" 01) + [3P.f 01) + aq/ 01)] 0 '(TI) - -  3 S c / 0 1 )  q/('q) = 0 (11) 

qg" 01) + 3S/(n)  q~' ('l) = 0 (12) 

w h e r e  
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a T R M ~ T  w mlw ~ into o 
C -~ cpMxM----------~ T w -  T~ L, Cp : Cpl/nlw -~ Cp2 (1 ~ mlw ) 

P iS the  P r a n d t l  n u m b e r ;  S i s  the  S c h m i d t  n u m b e r ;  L i s  t he  L e w i s  n u m b e r .  

The  b o u n d a r y  cond i t i ons  in the  new v a r i a b l e s  a r e  

= 0 ,  ]'---- O,ffw--= const, O = i ,  (p = 1 
~I = oo, = 0 ,  O = 0 , r  = 0  (13) 

The value offw is determined from the condition of the semipermeability of the vertical Surface (the 
surface is not permeable for air) 

I m l ~ - -  rnl~ (p' (0) ( 1 4 )  
fw -- 38 i -- mlw 
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The sys tem of nonlinear differential equations (10)-(12) with 
the boundary conditions (13) was solved by the numerical  step method 
on an M-20 computer ,  using an i teration process  [1, 2]. 

The resul ts  of a calculation for a binary mixture of carbon 
dioxide and a i r  a re  given in Table 1. For  the calculation, the fol-  
lowing quantities a re  given: Tw/Too , P, S (or L) 

a T R M ~ F  w 
DD = 2PI1M~Cp ( ' ( ' w - -  "1' ) 

where D D is the Dufeau number.  The pa ramete r s  a ,  c, e a re  com-  
puted as a function of the blowing pa rame te r s .  The values can be 
determined f rom the data of the table. 

The heat flux in a binary mixture depends on, the molecular  
and diffusional heat conductivity and is determined by formula (5), 
which is t r ans fo rmed  to the form 

Fig. 1 qx = - -  kcx-V,  ( T ~  - -  T ~ )  t0' (0) -t- LDD (ml~ -- m1r162 (p' (0)l 

or, in dimensionless form 

N~: = - -  ( l l ,  Gx)V" 10' (0) + c(p' (0)1 

where the coefficient C is determined above. 

(15) 

Analogously, f rom relationship (6), which cor responds  to the diffusion of mass ,  without taking ac -  
count of thermal  diffusion, for the Sherwood number we find 

.rod = - (114 Gx) ' i ' r  ' (o) (16) 

As a result ,  we can plot the profiles of the tempera ture ,  the velocity, and the concentration in the 
boundary layer ,  as well as the flows of heat and mass .  

Experiments were ca r r i ed  out on the determination of the concentration profiles with the blowing of 
carbon dioxide into air  at a ver t ical  porous surface in a laminar  boundary layer ,  with the simultaneous 
t rans fe r  of heat and mass ,  under conditions of natural convection. The carbon dioxide was blown through 
a porous copper plate measur ing  200x 300 mm 2, which was encased in a hermetical ly  sealed housing, having 
an independent heat ing sys tem.  The plates were heated using radiant heaters .  This method of heating makes 
it possible to obtain a homogeneous tempera ture  over  the whole working surface.  

The radiant heaters  were  made in the form of a double row of m i r ro r - t ype  infrared lamps:  The de- 
gree of heating of the porous plate was monitored by the change of the voltage in the feed circui t  of the 
lamps.  The mass  flow ra te  of the gas was measured  with an RS-3 ro tameter .  Control over the uniformity 
of the heating and measurement  of the tempera ture  of the plate were effected by c o p p e r - c o n s t a n t a n t h e r m o -  
couples, embedded in the surface of the plate. 

The thermocouples were made of copper wire with a diameter  of 0.1 mm and constantan wire  with 
a diameter  of 0.15 ram. 

The readings of the thermocouples  were recorded  on an R-306 potentiometer .  A Mach-Zehnder  in- 
t e r f e rome te r  was used to determine the tempera ture  and concentration fields. The light flux was directed 
parallel  to the short  side of the plate. The in te r fe rograms were analyzed using the formula 

[~5'T K2 7' 
x .  + - ( ' )  

Here )~ is the wavelength of the monochromatic  light; S is the dimensionless shift of the interference 
band; X is the volumetr ic  concentration; p is the p ressure ;  K is the Dahl-Gladstone constant: I is thewidth 
of the model. 

The mass  concentration is connected with the volumetr ic  concentration by the following relationship: 

ml ----- MIXi [MIXx -Jr- M2 (i --  XI)] -I 
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To obtain the concentra t ion prof i les  by analys is  of the i n t e r f e r o g r a m s  using formula  (17), we need 
to know the t e m p e r a t u r e  field in the c r o s s  sect ion under investigation.  The t e m p e r a t u r e  in the boundary 
l aye r  was m e a s u r e d  using a pos i t ioner .  

The thermocouple  of the pos i t ioner  was made of the same wi res  as the thermocouples  for  measur ing  
the sur face  t e m p e r a t u r e  of the p la te .  The readings  were  r eco rded  in an e lec t ronic  r ibbon-type automat ic  
r e c o r d e r .  

Figure  1 c o m p a r e s  the t e m p e r a t u r e  and concentra t ion prof i les ,  obtained by exper imenta l  and n u m e r -  
ical methods ,  with the data of [3], which  gives an approx imate  analyt ical  solution. Curves  1, 3, and points 
5 r e p r e s e n t  the numer ica l ,  approx imate  [3], and exper imenta l  t e m p e r a t u r e  prof i les  in the boundary l aye r ,  
with f w = - 0 . 0 1 ,  P =0.71, S = 0.86, D D =0.2, L =0.83, and Tw/T~o = 1.1. Curves  2, 4, and points 6 r e p r e s e n t  
the cor responding  concentra t ion prof i les  for  carbon dioxide. 
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